Abstract:Egocentric video grounding is a crucial task for embodied intelligence applications, distinct from exocentric video moment localization. Existing methods primarily focus on the distributional differences between egocentric and exocentric videos but often neglect key characteristics of egocentric videos and the fine-grained information emphasized by question-type queries. To address these limitations, we propose OSGNet, an Object-Shot enhanced Grounding Network for egocentric video. Specifically, we extract object information from videos to enrich video representation, particularly for objects highlighted in the textual query but not directly captured in the video features. Additionally, we analyze the frequent shot movements inherent to egocentric videos, leveraging these features to extract the wearer's attention information, which enhances the model's ability to perform modality alignment. Experiments conducted on three datasets demonstrate that OSGNet achieves state-of-the-art performance, validating the effectiveness of our approach. Our code can be found at https://github.com/Yisen-Feng/OSGNet.
Abstract:Stable Diffusion has advanced text-to-image synthesis, but training models to generate images with accurate object quantity is still difficult due to the high computational cost and the challenge of teaching models the abstract concept of quantity. In this paper, we propose CountDiffusion, a training-free framework aiming at generating images with correct object quantity from textual descriptions. CountDiffusion consists of two stages. In the first stage, an intermediate denoising result is generated by the diffusion model to predict the final synthesized image with one-step denoising, and a counting model is used to count the number of objects in this image. In the second stage, a correction module is used to correct the object quantity by changing the attention map of the object with universal guidance. The proposed CountDiffusion can be plugged into any diffusion-based text-to-image (T2I) generation models without further training. Experiment results demonstrate the superiority of our proposed CountDiffusion, which improves the accurate object quantity generation ability of T2I models by a large margin.
Abstract:Adapting vision-language models (VLMs) to downstream tasks with pseudolabels has gained increasing attention. A major obstacle is that the pseudolabels generated by VLMs tend to be imbalanced, leading to inferior performance. While existing methods have explored various strategies to address this, the underlying causes of imbalance remain insufficiently investigated. To fill this gap, we delve into imbalanced pseudolabels and identify two primary contributing factors: concept mismatch and concept confusion. To mitigate these two issues, we propose a novel framework incorporating concept alignment and confusion-aware calibrated margin mechanisms. The core of our approach lies in enhancing underperforming classes and promoting balanced predictions across categories, thus mitigating imbalance. Extensive experiments on six benchmark datasets with three learning paradigms demonstrate that the proposed method effectively enhances the accuracy and balance of pseudolabels, achieving a relative improvement of 6.29% over the SoTA method. Our code is avaliable at https://anonymous.4open.science/r/CAP-C642/
Abstract:Collecting multi-view driving scenario videos to enhance the performance of 3D visual perception tasks presents significant challenges and incurs substantial costs, making generative models for realistic data an appealing alternative. Yet, the videos generated by recent works suffer from poor quality and spatiotemporal consistency, undermining their utility in advancing perception tasks under driving scenarios. To address this gap, we propose DiVE, a diffusion transformer-based generative framework meticulously engineered to produce high-fidelity, temporally coherent, and cross-view consistent multi-view videos, aligning seamlessly with bird's-eye view layouts and textual descriptions. DiVE leverages a unified cross-attention and a SketchFormer to exert precise control over multimodal data, while incorporating a view-inflated attention mechanism that adds no extra parameters, thereby guaranteeing consistency across views. Despite these advancements, synthesizing high-resolution videos under multimodal constraints introduces dual challenges: investigating the optimal classifier-free guidance coniguration under intricate multi-condition inputs and mitigating excessive computational latency in high-resolution rendering--both of which remain underexplored in prior researches. To resolve these limitations, we introduce two innovations: Multi-Control Auxiliary Branch Distillation, which streamlines multi-condition CFG selection while circumventing high computational overhead, and Resolution Progressive Sampling, a training-free acceleration strategy that staggers resolution scaling to reduce high latency due to high resolution. These innovations collectively achieve a 2.62x speedup with minimal quality degradation. Evaluated on the nuScenes dataset, DiVE achieves SOTA performance in multi-view video generation, yielding photorealistic outputs with exceptional temporal and cross-view coherence.
Abstract:All-in-one image restoration, addressing diverse degradation types with a unified model, presents significant challenges in designing task-specific prompts that effectively guide restoration across multiple degradation scenarios. While adaptive prompt learning enables end-to-end optimization, it often yields overlapping or redundant task representations. Conversely, explicit prompts derived from pretrained classifiers enhance discriminability but may discard critical visual information for reconstruction. To address these limitations, we introduce Contrastive Prompt Learning (CPL), a novel framework that fundamentally enhances prompt-task alignment through two complementary innovations: a \emph{Sparse Prompt Module (SPM)} that efficiently captures degradation-specific features while minimizing redundancy, and a \emph{Contrastive Prompt Regularization (CPR)} that explicitly strengthens task boundaries by incorporating negative prompt samples across different degradation types. Unlike previous approaches that focus primarily on degradation classification, CPL optimizes the critical interaction between prompts and the restoration model itself. Extensive experiments across five comprehensive benchmarks demonstrate that CPL consistently enhances state-of-the-art all-in-one restoration models, achieving significant improvements in both standard multi-task scenarios and challenging composite degradation settings. Our framework establishes new state-of-the-art performance while maintaining parameter efficiency, offering a principled solution for unified image restoration.
Abstract:Recent advancements in Generalizable Gaussian Splatting have enabled robust 3D reconstruction from sparse input views by utilizing feed-forward Gaussian Splatting models, achieving superior cross-scene generalization. However, while many methods focus on geometric consistency, they often neglect the potential of text-driven guidance to enhance semantic understanding, which is crucial for accurately reconstructing fine-grained details in complex scenes. To address this limitation, we propose TextSplat--the first text-driven Generalizable Gaussian Splatting framework. By employing a text-guided fusion of diverse semantic cues, our framework learns robust cross-modal feature representations that improve the alignment of geometric and semantic information, producing high-fidelity 3D reconstructions. Specifically, our framework employs three parallel modules to obtain complementary representations: the Diffusion Prior Depth Estimator for accurate depth information, the Semantic Aware Segmentation Network for detailed semantic information, and the Multi-View Interaction Network for refined cross-view features. Then, in the Text-Guided Semantic Fusion Module, these representations are integrated via the text-guided and attention-based feature aggregation mechanism, resulting in enhanced 3D Gaussian parameters enriched with detailed semantic cues. Experimental results on various benchmark datasets demonstrate improved performance compared to existing methods across multiple evaluation metrics, validating the effectiveness of our framework. The code will be publicly available.
Abstract:Composed Image Retrieval (CIR) facilitates image retrieval through a multimodal query consisting of a reference image and modification text. The reference image defines the retrieval context, while the modification text specifies desired alterations. However, existing CIR datasets predominantly employ coarse-grained modification text (CoarseMT), which inadequately captures fine-grained retrieval intents. This limitation introduces two key challenges: (1) ignoring detailed differences leads to imprecise positive samples, and (2) greater ambiguity arises when retrieving visually similar images. These issues degrade retrieval accuracy, necessitating manual result filtering or repeated queries. To address these limitations, we develop a robust fine-grained CIR data annotation pipeline that minimizes imprecise positive samples and enhances CIR systems' ability to discern modification intents accurately. Using this pipeline, we refine the FashionIQ and CIRR datasets to create two fine-grained CIR datasets: Fine-FashionIQ and Fine-CIRR. Furthermore, we introduce FineCIR, the first CIR framework explicitly designed to parse the modification text. FineCIR effectively captures fine-grained modification semantics and aligns them with ambiguous visual entities, enhancing retrieval precision. Extensive experiments demonstrate that FineCIR consistently outperforms state-of-the-art CIR baselines on both fine-grained and traditional CIR benchmark datasets. Our FineCIR code and fine-grained CIR datasets are available at https://github.com/SDU-L/FineCIR.git.
Abstract:Composed Image Retrieval (CIR) allows users to search target images with a multimodal query, comprising a reference image and a modification text that describes the user's modification demand over the reference image. Nevertheless, due to the expensive labor cost of training data annotation, recent researchers have shifted to the challenging task of zero-shot CIR (ZS-CIR), which targets fulfilling CIR without annotated triplets. The pioneer ZS-CIR studies focus on converting the CIR task into a standard text-to-image retrieval task by pre-training a textual inversion network that can map a given image into a single pseudo-word token. Despite their significant progress, their coarse-grained textual inversion may be insufficient to capture the full content of the image accurately. To overcome this issue, in this work, we propose a novel Fine-grained Textual Inversion Network for ZS-CIR, named FTI4CIR. In particular, FTI4CIR comprises two main components: fine-grained pseudo-word token mapping and tri-wise caption-based semantic regularization. The former maps the image into a subject-oriented pseudo-word token and several attribute-oriented pseudo-word tokens to comprehensively express the image in the textual form, while the latter works on jointly aligning the fine-grained pseudo-word tokens to the real-word token embedding space based on a BLIP-generated image caption template. Extensive experiments conducted on three benchmark datasets demonstrate the superiority of our proposed method.
Abstract:Dataset distillation (DD) excels in synthesizing a small number of images per class (IPC) but struggles to maintain its effectiveness in high-IPC settings. Recent works on dataset distillation demonstrate that combining distilled and real data can mitigate the effectiveness decay. However, our analysis of the combination paradigm reveals that the current one-shot and independent selection mechanism induces an incompatibility issue between distilled and real images. To address this issue, we introduce a novel curriculum coarse-to-fine selection (CCFS) method for efficient high-IPC dataset distillation. CCFS employs a curriculum selection framework for real data selection, where we leverage a coarse-to-fine strategy to select appropriate real data based on the current synthetic dataset in each curriculum. Extensive experiments validate CCFS, surpassing the state-of-the-art by +6.6\% on CIFAR-10, +5.8\% on CIFAR-100, and +3.4\% on Tiny-ImageNet under high-IPC settings. Notably, CCFS achieves 60.2\% test accuracy on ResNet-18 with a 20\% compression ratio of Tiny-ImageNet, closely matching full-dataset training with only 0.3\% degradation. Code: https://github.com/CYDaaa30/CCFS.
Abstract:Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities in multimodal understanding, reasoning, and interaction. Given the extensive applications of MLLMs, the associated safety issues have become increasingly critical. Due to the effectiveness of preference optimization in aligning MLLMs with human preferences, there is an urgent need for safety-related preference data for MLLMs. To address this, we construct the MMSafe-PO preference dataset towards harmless multimodal assistants, featuring multimodal instructions, the conversational format, and ranked paired responses from human feedback. We also identify two insightful observations: modality co-defense and modality cheating, which illustrate that MLLMs possess a certain level of inherent defense while still presenting unique safety challenges. Based on these observations, we propose the Blind Preference Optimization (BPO) approach. Comprehensive experiments on three benchmarks show that BPO effectively enhances the safety capabilities of MLLMs. Notably, BPO significantly improves the safety rate of the base MLLM by 45.0%, outperforming the DPO approach. Additionally, applying BPO to the MMSafe-PO dataset greatly reduces the base MLLM's unsafe rate on other safety benchmarks (14.5% on MM-SafetyBench and 82.9% on HarmEval, demonstrating the effectiveness and robustness of both the dataset and the approach. We release code and data at https://lu-yang666.github.io/MMsafe-PO-Web/.